'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(c()) -> mark(f(g(c()))) , active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(c()) -> c_0(f^#(g(c()))) , active^#(f(g(X))) -> c_1(g^#(X)) , proper^#(c()) -> c_2() , proper^#(f(X)) -> c_3(f^#(proper(X))) , proper^#(g(X)) -> c_4(g^#(proper(X))) , f^#(ok(X)) -> c_5(f^#(X)) , g^#(ok(X)) -> c_6(g^#(X)) , top^#(mark(X)) -> c_7(top^#(proper(X))) , top^#(ok(X)) -> c_8(top^#(active(X)))} The usable rules are: { active(c()) -> mark(f(g(c()))) , active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} The estimated dependency graph contains the following edges: {active^#(f(g(X))) -> c_1(g^#(X))} ==> {g^#(ok(X)) -> c_6(g^#(X))} {proper^#(f(X)) -> c_3(f^#(proper(X)))} ==> {f^#(ok(X)) -> c_5(f^#(X))} {proper^#(g(X)) -> c_4(g^#(proper(X)))} ==> {g^#(ok(X)) -> c_6(g^#(X))} {f^#(ok(X)) -> c_5(f^#(X))} ==> {f^#(ok(X)) -> c_5(f^#(X))} {g^#(ok(X)) -> c_6(g^#(X))} ==> {g^#(ok(X)) -> c_6(g^#(X))} {top^#(mark(X)) -> c_7(top^#(proper(X)))} ==> {top^#(ok(X)) -> c_8(top^#(active(X)))} {top^#(mark(X)) -> c_7(top^#(proper(X)))} ==> {top^#(mark(X)) -> c_7(top^#(proper(X)))} {top^#(ok(X)) -> c_8(top^#(active(X)))} ==> {top^#(ok(X)) -> c_8(top^#(active(X)))} {top^#(ok(X)) -> c_8(top^#(active(X)))} ==> {top^#(mark(X)) -> c_7(top^#(proper(X)))} We consider the following path(s): 1) { top^#(mark(X)) -> c_7(top^#(proper(X))) , top^#(ok(X)) -> c_8(top^#(active(X)))} The usable rules for this path are the following: { active(c()) -> mark(f(g(c()))) , active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(c()) -> mark(f(g(c()))) , active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X)) , top^#(mark(X)) -> c_7(top^#(proper(X))) , top^#(ok(X)) -> c_8(top^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {top^#(ok(X)) -> c_8(top^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(ok(X)) -> c_8(top^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] c() = [0] mark(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [9] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [7] c_7(x1) = [1] x1 + [3] c_8(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules {top^#(ok(X)) -> c_8(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] c() = [0] mark(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [9] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(g(X))) -> mark(g(X))} and weakly orienting the rules { proper(c()) -> ok(c()) , top^#(ok(X)) -> c_8(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(g(X))) -> mark(g(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] c() = [0] mark(x1) = [1] x1 + [4] f(x1) = [1] x1 + [8] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [4] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [12] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {top^#(mark(X)) -> c_7(top^#(proper(X)))} and weakly orienting the rules { active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , top^#(ok(X)) -> c_8(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(mark(X)) -> c_7(top^#(proper(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] c() = [0] mark(x1) = [1] x1 + [12] f(x1) = [1] x1 + [12] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(c()) -> mark(f(g(c()))) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { top^#(mark(X)) -> c_7(top^#(proper(X))) , active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , top^#(ok(X)) -> c_8(top^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(c()) -> mark(f(g(c()))) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { top^#(mark(X)) -> c_7(top^#(proper(X))) , active(f(g(X))) -> mark(g(X)) , proper(c()) -> ok(c()) , top^#(ok(X)) -> c_8(top^#(active(X)))} Details: The problem is Match-bounded by 5. The enriched problem is compatible with the following automaton: { active_0(2) -> 6 , active_1(2) -> 15 , active_1(9) -> 17 , active_2(9) -> 28 , active_2(32) -> 37 , active_3(32) -> 39 , active_3(41) -> 43 , active_4(40) -> 58 , active_4(41) -> 45 , active_5(40) -> 60 , active_5(61) -> 63 , c_0() -> 2 , c_1() -> 9 , c_2() -> 20 , c_3() -> 35 , c_4() -> 56 , mark_0(2) -> 2 , mark_1(7) -> 6 , mark_1(7) -> 15 , mark_2(18) -> 17 , mark_2(18) -> 28 , mark_3(31) -> 37 , mark_3(31) -> 39 , mark_4(40) -> 43 , mark_4(40) -> 45 , f_1(8) -> 7 , f_2(19) -> 18 , f_2(21) -> 13 , f_2(21) -> 24 , f_3(29) -> 26 , f_3(29) -> 34 , f_3(31) -> 32 , f_4(40) -> 41 , g_1(9) -> 8 , g_2(20) -> 19 , g_2(22) -> 21 , g_3(20) -> 31 , g_3(30) -> 29 , g_4(35) -> 40 , g_4(50) -> 47 , g_4(50) -> 49 , g_5(53) -> 52 , g_5(53) -> 55 , g_5(56) -> 61 , proper_0(2) -> 4 , proper_1(2) -> 11 , proper_1(7) -> 13 , proper_2(7) -> 24 , proper_2(8) -> 21 , proper_2(9) -> 22 , proper_2(18) -> 26 , proper_3(18) -> 34 , proper_3(19) -> 29 , proper_3(20) -> 30 , proper_3(31) -> 47 , proper_4(20) -> 50 , proper_4(31) -> 49 , proper_4(40) -> 52 , proper_5(35) -> 53 , proper_5(40) -> 55 , ok_0(2) -> 2 , ok_0(2) -> 4 , ok_1(9) -> 11 , ok_2(20) -> 22 , ok_3(31) -> 21 , ok_3(32) -> 13 , ok_3(32) -> 24 , ok_3(35) -> 30 , ok_3(35) -> 50 , ok_4(40) -> 29 , ok_4(40) -> 47 , ok_4(40) -> 49 , ok_4(41) -> 26 , ok_4(41) -> 34 , ok_4(56) -> 53 , ok_5(61) -> 52 , ok_5(61) -> 55 , top^#_0(2) -> 1 , top^#_0(4) -> 3 , top^#_0(6) -> 5 , top^#_1(11) -> 10 , top^#_1(13) -> 12 , top^#_1(15) -> 14 , top^#_1(17) -> 16 , top^#_2(24) -> 23 , top^#_2(26) -> 25 , top^#_2(28) -> 27 , top^#_2(37) -> 36 , top^#_3(34) -> 33 , top^#_3(39) -> 38 , top^#_3(43) -> 42 , top^#_3(47) -> 46 , top^#_4(45) -> 44 , top^#_4(49) -> 48 , top^#_4(52) -> 51 , top^#_4(58) -> 57 , top^#_5(55) -> 54 , top^#_5(60) -> 59 , top^#_5(63) -> 62 , c_7_0(3) -> 1 , c_7_1(10) -> 1 , c_7_1(12) -> 5 , c_7_2(23) -> 14 , c_7_2(25) -> 16 , c_7_3(33) -> 27 , c_7_3(46) -> 36 , c_7_4(48) -> 38 , c_7_4(51) -> 42 , c_7_4(51) -> 44 , c_7_5(54) -> 44 , c_8_0(5) -> 1 , c_8_0(5) -> 3 , c_8_1(14) -> 1 , c_8_1(14) -> 3 , c_8_1(16) -> 10 , c_8_2(27) -> 10 , c_8_2(36) -> 12 , c_8_3(38) -> 23 , c_8_3(42) -> 25 , c_8_4(44) -> 33 , c_8_4(57) -> 46 , c_8_5(59) -> 48 , c_8_5(62) -> 51 , c_8_5(62) -> 54} 2) { proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_5(f^#(X))} The usable rules for this path are the following: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X)) , proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_5(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_5(f^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_5(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_3(f^#(proper(X)))} and weakly orienting the rules {f^#(ok(X)) -> c_5(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules { proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_5(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_5(f^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_5(f^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0() -> 2 , ok_0(2) -> 7 , ok_0(7) -> 7 , f^#_0(2) -> 11 , f^#_0(7) -> 11 , proper^#_0(2) -> 14 , proper^#_0(7) -> 14 , c_5_0(11) -> 11} 3) { proper^#(g(X)) -> c_4(g^#(proper(X))) , g^#(ok(X)) -> c_6(g^#(X))} The usable rules for this path are the following: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X)) , proper^#(g(X)) -> c_4(g^#(proper(X))) , g^#(ok(X)) -> c_6(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_6(g^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_6(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [1] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_4(g^#(proper(X)))} and weakly orienting the rules {g^#(ok(X)) -> c_6(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_4(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules { proper^#(g(X)) -> c_4(g^#(proper(X))) , g^#(ok(X)) -> c_6(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [2] proper^#(x1) = [1] x1 + [3] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(g(X)) -> c_4(g^#(proper(X))) , g^#(ok(X)) -> c_6(g^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(g(X)) -> c_4(g^#(proper(X))) , g^#(ok(X)) -> c_6(g^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0() -> 2 , ok_0(2) -> 7 , ok_0(7) -> 7 , g^#_0(2) -> 13 , g^#_0(7) -> 13 , proper^#_0(2) -> 14 , proper^#_0(7) -> 14 , c_6_0(13) -> 13} 4) {proper^#(f(X)) -> c_3(f^#(proper(X)))} The usable rules for this path are the following: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X)) , proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_3(f^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules {proper^#(f(X)) -> c_3(f^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [7] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [10] c_2() = [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0() -> 2 , ok_0(2) -> 7 , ok_0(7) -> 7 , f^#_0(2) -> 11 , f^#_0(7) -> 11 , proper^#_0(2) -> 14 , proper^#_0(7) -> 14} 5) {proper^#(g(X)) -> c_4(g^#(proper(X)))} The usable rules for this path are the following: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X)) , proper^#(g(X)) -> c_4(g^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_4(g^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_4(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules {proper^#(g(X)) -> c_4(g^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [4] proper^#(x1) = [1] x1 + [5] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(g(X)) -> c_4(g^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(ok(X)) -> ok(g(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { proper(c()) -> ok(c()) , proper^#(g(X)) -> c_4(g^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0() -> 2 , ok_0(2) -> 7 , ok_0(7) -> 7 , g^#_0(2) -> 13 , g^#_0(7) -> 13 , proper^#_0(2) -> 14 , proper^#_0(7) -> 14} 6) {active^#(c()) -> c_0(f^#(g(c())))} The usable rules for this path are the following: {g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { g(ok(X)) -> ok(g(X)) , active^#(c()) -> c_0(f^#(g(c())))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(c()) -> c_0(f^#(g(c())))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(c()) -> c_0(f^#(g(c())))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [1] x1 + [1] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {g(ok(X)) -> ok(g(X))} Weak Rules: {active^#(c()) -> c_0(f^#(g(c())))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {g(ok(X)) -> ok(g(X))} Weak Rules: {active^#(c()) -> c_0(f^#(g(c())))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { c_0() -> 2 , c_1() -> 8 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(8) -> 7 , ok_0(2) -> 2 , ok_1(5) -> 4 , ok_1(5) -> 5 , active^#_0(2) -> 1 , c_0_0(3) -> 1 , c_0_1(6) -> 1 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(7) -> 6} 7) { active^#(f(g(X))) -> c_1(g^#(X)) , g^#(ok(X)) -> c_6(g^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {g^#(ok(X)) -> c_6(g^#(X))} Weak Rules: {active^#(f(g(X))) -> c_1(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_6(g^#(X))} and weakly orienting the rules {active^#(f(g(X))) -> c_1(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_6(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [3] g^#(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [3] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { g^#(ok(X)) -> c_6(g^#(X)) , active^#(f(g(X))) -> c_1(g^#(X))} Details: The given problem does not contain any strict rules 8) {active^#(f(g(X))) -> c_1(g^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(f(g(X))) -> c_1(g^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(g(X))) -> c_1(g^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(g(X))) -> c_1(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(f(g(X))) -> c_1(g^#(X))} Details: The given problem does not contain any strict rules 9) {proper^#(c()) -> c_2()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(c()) -> c_2()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(c()) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(c()) -> c_2()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] c() = [0] mark(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(c()) -> c_2()} Details: The given problem does not contain any strict rules