'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(c()) -> mark(f(g(c())))
     , active(f(g(X))) -> mark(g(X))
     , proper(c()) -> ok(c())
     , proper(f(X)) -> f(proper(X))
     , proper(g(X)) -> g(proper(X))
     , f(ok(X)) -> ok(f(X))
     , g(ok(X)) -> ok(g(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(c()) -> c_0(f^#(g(c())))
    , active^#(f(g(X))) -> c_1(g^#(X))
    , proper^#(c()) -> c_2()
    , proper^#(f(X)) -> c_3(f^#(proper(X)))
    , proper^#(g(X)) -> c_4(g^#(proper(X)))
    , f^#(ok(X)) -> c_5(f^#(X))
    , g^#(ok(X)) -> c_6(g^#(X))
    , top^#(mark(X)) -> c_7(top^#(proper(X)))
    , top^#(ok(X)) -> c_8(top^#(active(X)))}
  
  The usable rules are:
   {  active(c()) -> mark(f(g(c())))
    , active(f(g(X))) -> mark(g(X))
    , proper(c()) -> ok(c())
    , proper(f(X)) -> f(proper(X))
    , proper(g(X)) -> g(proper(X))
    , g(ok(X)) -> ok(g(X))
    , f(ok(X)) -> ok(f(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(f(g(X))) -> c_1(g^#(X))}
     ==> {g^#(ok(X)) -> c_6(g^#(X))}
   {proper^#(f(X)) -> c_3(f^#(proper(X)))}
     ==> {f^#(ok(X)) -> c_5(f^#(X))}
   {proper^#(g(X)) -> c_4(g^#(proper(X)))}
     ==> {g^#(ok(X)) -> c_6(g^#(X))}
   {f^#(ok(X)) -> c_5(f^#(X))}
     ==> {f^#(ok(X)) -> c_5(f^#(X))}
   {g^#(ok(X)) -> c_6(g^#(X))}
     ==> {g^#(ok(X)) -> c_6(g^#(X))}
   {top^#(mark(X)) -> c_7(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_8(top^#(active(X)))}
   {top^#(mark(X)) -> c_7(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_7(top^#(proper(X)))}
   {top^#(ok(X)) -> c_8(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_8(top^#(active(X)))}
   {top^#(ok(X)) -> c_8(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_7(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_7(top^#(proper(X)))
       , top^#(ok(X)) -> c_8(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(c()) -> mark(f(g(c())))
       , active(f(g(X))) -> mark(g(X))
       , proper(c()) -> ok(c())
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , g(ok(X)) -> ok(g(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(c()) -> mark(f(g(c())))
               , active(f(g(X))) -> mark(g(X))
               , proper(c()) -> ok(c())
               , proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , g(ok(X)) -> ok(g(X))
               , f(ok(X)) -> ok(f(X))
               , top^#(mark(X)) -> c_7(top^#(proper(X)))
               , top^#(ok(X)) -> c_8(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_8(top^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_8(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  c() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [9]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [7]
                  c_7(x1) = [1] x1 + [3]
                  c_8(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {top^#(ok(X)) -> c_8(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  c() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [9]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(g(X))) -> mark(g(X))}
            and weakly orienting the rules
            {  proper(c()) -> ok(c())
             , top^#(ok(X)) -> c_8(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(g(X))) -> mark(g(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  c() = [0]
                  mark(x1) = [1] x1 + [4]
                  f(x1) = [1] x1 + [8]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [12]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(mark(X)) -> c_7(top^#(proper(X)))}
            and weakly orienting the rules
            {  active(f(g(X))) -> mark(g(X))
             , proper(c()) -> ok(c())
             , top^#(ok(X)) -> c_8(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(mark(X)) -> c_7(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  c() = [0]
                  mark(x1) = [1] x1 + [12]
                  f(x1) = [1] x1 + [12]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(c()) -> mark(f(g(c())))
                 , proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , g(ok(X)) -> ok(g(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules:
                {  top^#(mark(X)) -> c_7(top^#(proper(X)))
                 , active(f(g(X))) -> mark(g(X))
                 , proper(c()) -> ok(c())
                 , top^#(ok(X)) -> c_8(top^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(c()) -> mark(f(g(c())))
                   , proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , g(ok(X)) -> ok(g(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules:
                  {  top^#(mark(X)) -> c_7(top^#(proper(X)))
                   , active(f(g(X))) -> mark(g(X))
                   , proper(c()) -> ok(c())
                   , top^#(ok(X)) -> c_8(top^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 5.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 6
                 , active_1(2) -> 15
                 , active_1(9) -> 17
                 , active_2(9) -> 28
                 , active_2(32) -> 37
                 , active_3(32) -> 39
                 , active_3(41) -> 43
                 , active_4(40) -> 58
                 , active_4(41) -> 45
                 , active_5(40) -> 60
                 , active_5(61) -> 63
                 , c_0() -> 2
                 , c_1() -> 9
                 , c_2() -> 20
                 , c_3() -> 35
                 , c_4() -> 56
                 , mark_0(2) -> 2
                 , mark_1(7) -> 6
                 , mark_1(7) -> 15
                 , mark_2(18) -> 17
                 , mark_2(18) -> 28
                 , mark_3(31) -> 37
                 , mark_3(31) -> 39
                 , mark_4(40) -> 43
                 , mark_4(40) -> 45
                 , f_1(8) -> 7
                 , f_2(19) -> 18
                 , f_2(21) -> 13
                 , f_2(21) -> 24
                 , f_3(29) -> 26
                 , f_3(29) -> 34
                 , f_3(31) -> 32
                 , f_4(40) -> 41
                 , g_1(9) -> 8
                 , g_2(20) -> 19
                 , g_2(22) -> 21
                 , g_3(20) -> 31
                 , g_3(30) -> 29
                 , g_4(35) -> 40
                 , g_4(50) -> 47
                 , g_4(50) -> 49
                 , g_5(53) -> 52
                 , g_5(53) -> 55
                 , g_5(56) -> 61
                 , proper_0(2) -> 4
                 , proper_1(2) -> 11
                 , proper_1(7) -> 13
                 , proper_2(7) -> 24
                 , proper_2(8) -> 21
                 , proper_2(9) -> 22
                 , proper_2(18) -> 26
                 , proper_3(18) -> 34
                 , proper_3(19) -> 29
                 , proper_3(20) -> 30
                 , proper_3(31) -> 47
                 , proper_4(20) -> 50
                 , proper_4(31) -> 49
                 , proper_4(40) -> 52
                 , proper_5(35) -> 53
                 , proper_5(40) -> 55
                 , ok_0(2) -> 2
                 , ok_0(2) -> 4
                 , ok_1(9) -> 11
                 , ok_2(20) -> 22
                 , ok_3(31) -> 21
                 , ok_3(32) -> 13
                 , ok_3(32) -> 24
                 , ok_3(35) -> 30
                 , ok_3(35) -> 50
                 , ok_4(40) -> 29
                 , ok_4(40) -> 47
                 , ok_4(40) -> 49
                 , ok_4(41) -> 26
                 , ok_4(41) -> 34
                 , ok_4(56) -> 53
                 , ok_5(61) -> 52
                 , ok_5(61) -> 55
                 , top^#_0(2) -> 1
                 , top^#_0(4) -> 3
                 , top^#_0(6) -> 5
                 , top^#_1(11) -> 10
                 , top^#_1(13) -> 12
                 , top^#_1(15) -> 14
                 , top^#_1(17) -> 16
                 , top^#_2(24) -> 23
                 , top^#_2(26) -> 25
                 , top^#_2(28) -> 27
                 , top^#_2(37) -> 36
                 , top^#_3(34) -> 33
                 , top^#_3(39) -> 38
                 , top^#_3(43) -> 42
                 , top^#_3(47) -> 46
                 , top^#_4(45) -> 44
                 , top^#_4(49) -> 48
                 , top^#_4(52) -> 51
                 , top^#_4(58) -> 57
                 , top^#_5(55) -> 54
                 , top^#_5(60) -> 59
                 , top^#_5(63) -> 62
                 , c_7_0(3) -> 1
                 , c_7_1(10) -> 1
                 , c_7_1(12) -> 5
                 , c_7_2(23) -> 14
                 , c_7_2(25) -> 16
                 , c_7_3(33) -> 27
                 , c_7_3(46) -> 36
                 , c_7_4(48) -> 38
                 , c_7_4(51) -> 42
                 , c_7_4(51) -> 44
                 , c_7_5(54) -> 44
                 , c_8_0(5) -> 1
                 , c_8_0(5) -> 3
                 , c_8_1(14) -> 1
                 , c_8_1(14) -> 3
                 , c_8_1(16) -> 10
                 , c_8_2(27) -> 10
                 , c_8_2(36) -> 12
                 , c_8_3(38) -> 23
                 , c_8_3(42) -> 25
                 , c_8_4(44) -> 33
                 , c_8_4(57) -> 46
                 , c_8_5(59) -> 48
                 , c_8_5(62) -> 51
                 , c_8_5(62) -> 54}
      
   2) {  proper^#(f(X)) -> c_3(f^#(proper(X)))
       , f^#(ok(X)) -> c_5(f^#(X))}
      
      The usable rules for this path are the following:
      {  proper(c()) -> ok(c())
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , g(ok(X)) -> ok(g(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(c()) -> ok(c())
               , proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , g(ok(X)) -> ok(g(X))
               , f(ok(X)) -> ok(f(X))
               , proper^#(f(X)) -> c_3(f^#(proper(X)))
               , f^#(ok(X)) -> c_5(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_5(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_5(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_3(f^#(proper(X)))}
            and weakly orienting the rules
            {f^#(ok(X)) -> c_5(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_3(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {  proper^#(f(X)) -> c_3(f^#(proper(X)))
             , f^#(ok(X)) -> c_5(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , g(ok(X)) -> ok(g(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper^#(f(X)) -> c_3(f^#(proper(X)))
                 , f^#(ok(X)) -> c_5(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , g(ok(X)) -> ok(g(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper^#(f(X)) -> c_3(f^#(proper(X)))
                   , f^#(ok(X)) -> c_5(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0() -> 2
                 , ok_0(2) -> 7
                 , ok_0(7) -> 7
                 , f^#_0(2) -> 11
                 , f^#_0(7) -> 11
                 , proper^#_0(2) -> 14
                 , proper^#_0(7) -> 14
                 , c_5_0(11) -> 11}
      
   3) {  proper^#(g(X)) -> c_4(g^#(proper(X)))
       , g^#(ok(X)) -> c_6(g^#(X))}
      
      The usable rules for this path are the following:
      {  proper(c()) -> ok(c())
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , g(ok(X)) -> ok(g(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(c()) -> ok(c())
               , proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , g(ok(X)) -> ok(g(X))
               , f(ok(X)) -> ok(f(X))
               , proper^#(g(X)) -> c_4(g^#(proper(X)))
               , g^#(ok(X)) -> c_6(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {g^#(ok(X)) -> c_6(g^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(ok(X)) -> c_6(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_4(g^#(proper(X)))}
            and weakly orienting the rules
            {g^#(ok(X)) -> c_6(g^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_4(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {  proper^#(g(X)) -> c_4(g^#(proper(X)))
             , g^#(ok(X)) -> c_6(g^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [2]
                  proper^#(x1) = [1] x1 + [3]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , g(ok(X)) -> ok(g(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper^#(g(X)) -> c_4(g^#(proper(X)))
                 , g^#(ok(X)) -> c_6(g^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , g(ok(X)) -> ok(g(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper^#(g(X)) -> c_4(g^#(proper(X)))
                   , g^#(ok(X)) -> c_6(g^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0() -> 2
                 , ok_0(2) -> 7
                 , ok_0(7) -> 7
                 , g^#_0(2) -> 13
                 , g^#_0(7) -> 13
                 , proper^#_0(2) -> 14
                 , proper^#_0(7) -> 14
                 , c_6_0(13) -> 13}
      
   4) {proper^#(f(X)) -> c_3(f^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(c()) -> ok(c())
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , g(ok(X)) -> ok(g(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(c()) -> ok(c())
               , proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , g(ok(X)) -> ok(g(X))
               , f(ok(X)) -> ok(f(X))
               , proper^#(f(X)) -> c_3(f^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_3(f^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_3(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {proper^#(f(X)) -> c_3(f^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [7]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [10]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , g(ok(X)) -> ok(g(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper^#(f(X)) -> c_3(f^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , g(ok(X)) -> ok(g(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper^#(f(X)) -> c_3(f^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0() -> 2
                 , ok_0(2) -> 7
                 , ok_0(7) -> 7
                 , f^#_0(2) -> 11
                 , f^#_0(7) -> 11
                 , proper^#_0(2) -> 14
                 , proper^#_0(7) -> 14}
      
   5) {proper^#(g(X)) -> c_4(g^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(c()) -> ok(c())
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , g(ok(X)) -> ok(g(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(c()) -> ok(c())
               , proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , g(ok(X)) -> ok(g(X))
               , f(ok(X)) -> ok(f(X))
               , proper^#(g(X)) -> c_4(g^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_4(g^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_4(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {proper^#(g(X)) -> c_4(g^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [4]
                  proper^#(x1) = [1] x1 + [5]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , g(ok(X)) -> ok(g(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper^#(g(X)) -> c_4(g^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , g(ok(X)) -> ok(g(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper^#(g(X)) -> c_4(g^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0() -> 2
                 , ok_0(2) -> 7
                 , ok_0(7) -> 7
                 , g^#_0(2) -> 13
                 , g^#_0(7) -> 13
                 , proper^#_0(2) -> 14
                 , proper^#_0(7) -> 14}
      
   6) {active^#(c()) -> c_0(f^#(g(c())))}
      
      The usable rules for this path are the following:
      {g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  g(ok(X)) -> ok(g(X))
               , active^#(c()) -> c_0(f^#(g(c())))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(c()) -> c_0(f^#(g(c())))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(c()) -> c_0(f^#(g(c())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {g(ok(X)) -> ok(g(X))}
              Weak Rules: {active^#(c()) -> c_0(f^#(g(c())))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {g(ok(X)) -> ok(g(X))}
                Weak Rules: {active^#(c()) -> c_0(f^#(g(c())))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  c_0() -> 2
                 , c_1() -> 8
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(8) -> 7
                 , ok_0(2) -> 2
                 , ok_1(5) -> 4
                 , ok_1(5) -> 5
                 , active^#_0(2) -> 1
                 , c_0_0(3) -> 1
                 , c_0_1(6) -> 1
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(7) -> 6}
      
   7) {  active^#(f(g(X))) -> c_1(g^#(X))
       , g^#(ok(X)) -> c_6(g^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           c() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {g^#(ok(X)) -> c_6(g^#(X))}
            Weak Rules: {active^#(f(g(X))) -> c_1(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {g^#(ok(X)) -> c_6(g^#(X))}
            and weakly orienting the rules
            {active^#(f(g(X))) -> c_1(g^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(ok(X)) -> c_6(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [3]
                  g^#(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [3]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  g^#(ok(X)) -> c_6(g^#(X))
                 , active^#(f(g(X))) -> c_1(g^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   8) {active^#(f(g(X))) -> c_1(g^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           c() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(f(g(X))) -> c_1(g^#(X))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(g(X))) -> c_1(g^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(g(X))) -> c_1(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(f(g(X))) -> c_1(g^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   9) {proper^#(c()) -> c_2()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           c() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(c()) -> c_2()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(c()) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(c()) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  c() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(c()) -> c_2()}
            
            Details:         
              The given problem does not contain any strict rules